Controller design for V-Loop ============================ The examples here will consider designing the RST and ILC controllers for the voltage loop. For simplicity, the examples will consider the desired control parameters taken from the default function (see :ref:`API Reference`): .. code-block:: python >>> import pyfresco.obcd as cd >>> device = 'RFNA.866.01.ETH2' >>> user_pars_v = cd.get_default_v(device) >>> user_pars_v >>> vars(user_pars_v) {'damp_bw': 75, 'damp_z': 0.8, 'volt_mm': 0.5, 'opt_method': 'Hinf', 'volt_bw': 50, 'volt_z': 0.8, 'ref_delay': 0, 'control_mode': 'V', 'debug': False, 'positive_coeff': False, 'kd_0': False} >>> fgc_v = cd.FgcProperties.from_fgc_v(user_pars_v, device) >>> fgc_v >>> vars(fgc_v) {'LOAD.OHMS_SER': 9.9999997e-06, 'LOAD.OHMS_MAG': 0.13600001, 'LOAD.OHMS_PAR': 100000000.0, 'LOAD.HENRYS': 0.0063999998, 'LOAD.GAUSS_PER_AMP': 1.0, 'VS.ACTUATION': 'VOLTAGE_REF', 'VS.FIRING.DELAY': 0.00166667, 'VS.ACT_DELAY_ITERS': 1.5, 'FGC.ITER_PERIOD': 9.9999997e-05, 'VS.FILTER.FARADS1': 0.039999999, 'VS.FILTER.FARADS2': 0.0099999998, 'VS.FILTER.OHMS': 0.0070000002, 'VS.FILTER.HENRYS': 0.00060000003, 'REG.I.INTERNAL.PURE_DELAY_PERIODS': 0.0, 'MEAS.I.DELAY_ITERS': 0.51999998, 'MEAS.V.DELAY_ITERS': 0.51999998} Model-based design (V) ---------------------- The model-based design uses the FGC properties to design a controller. It is thus imperative that the correct load properties are set in the FGC. This method can be used in cases where a frequency response measurement cannot be obtained from a particular power converter. The model-based design can be completed by simply calling the following functions: .. code-block:: python >>> X = cd.OptimizeV(fgc_v, user_pars_v) >>> opt_result, df_sens, margins = X.model_opt() >>> vars(opt_result) {'Kd': [0.2702714426345273, 0.015855706981816254, 1.3441402655593147], 'Kv': [0.14642296449100214, 108.34838485558069, 0.3202947134041462]} The :code:`opt_result` object contains both the damping loop and voltage loop parameters, given by :code:`Kd` and :code:`Kv`, respectively. The results from the optimization problem can then be sent to the FGC as follows: .. code-block:: python >>> cd.FgcProperties.to_fgc_v(opt_result, user_pars_ib, device) The output dataframe :code:`df_sens` contains the closed-loop sensitivity functions, and is discussed in :ref:`Sensitivity functions`. Finally, :code:`margins` contains the calculated robustness margins (in dictionary format) of the closed-loop system: :code:`modulus_margin`, :code:`gain_margin`, :code:`phase_margin` and :code:`delay_margin`. Data-driven design (V) ---------------------- To perform a data-driven design for the voltage loop, three frequency responses are needed: - F_REF_LIMITED to I_CAPA - F_REF_LIMITED to V_MEAS_REF - F_REF_LIMITED to I_MEAS In addition to these frequency responses, the DC gain of the load is also required; let us assume that a PRBS experiment was performed with the following log data: .. code-block:: python >>> df_vreg t_global V_MEAS_REG_(V) F_REF_LIMITED_(V) I_CAPA_(A) - t_local sample t_local sample t_local sample 0 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 -3.763275e-21 1 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 -3.726354e-21 2 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 -3.687887e-21 3 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 -3.647898e-21 4 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 -3.606406e-21 ... ... ... ... ... ... ... ... >>> df_imeas1 t_global I_MEAS_(A) V_REF_(V) V_MEAS_(V) - t_local sample t_local sample t_local sample 0 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 0.000000 1 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 0.000000 2 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 0.000000 3 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 0.000000 4 1.597837e+09 1.597837e+09 0.000000 1.597837e+09 0.0 1.597837e+09 0.000000 ... ... ... ... ... ... ... ... >>> df_dcgain t_global I_MEAS_(A) V_REF_(V) V_MEAS_(V) - t_local sample t_local sample t_local sample 0 1.597831e+09 1.597831e+09 7.352385 1.597831e+09 1.0 1.597831e+09 0.999998 1 1.597831e+09 1.597831e+09 7.352385 1.597831e+09 1.0 1.597831e+09 0.999998 2 1.597831e+09 1.597831e+09 7.352385 1.597831e+09 1.0 1.597831e+09 0.999998 3 1.597831e+09 1.597831e+09 7.352385 1.597831e+09 1.0 1.597831e+09 0.999998 4 1.597831e+09 1.597831e+09 7.352385 1.597831e+09 1.0 1.597831e+09 0.999998 ... ... ... ... ... ... ... ... The frequency responses and DC gain can then be obtained as follows: .. code-block:: python >>> import pyfresco.frm as frm >>> df_vmeas = frm.prbs(df_vreg, prbs_vmeas, device) >>> df_icapa = frm.prbs(df_vreg, prbs_icapa, device) >>> df_imeas = frm.prbs(df_imeas1, prbs_imeas, device) The parameters :code:`prbs_vmeas`, :code:`prbs_icapa`, and :code:`prbs_imeas` are simply the objects containing the UI input parameters (see :ref:`PRBS Example`). The data-driven design can then be completed by simply calling the following functions: .. code-block:: python >>> X = cd.OptimizeV(fgc_v, user_pars_v) >>> opt_result, df_sens, margins = X.data_opt(df_icapa, df_vmeas, df_imeas, df_dcgain) >>> vars(opt_result) {'Kd': [0.30363474386072414, 0.014489922006368857, 1.2091239687250508], 'Kv': [-0.046388735100899886, 47.702158277587756, 0.7295920508127712]}